Seismic Analysis of Multistorey Building with and Without Soft Storey

Md. Hussain¹,Mohd. Faisaluddin², Shaik Abdulla³,Nadeem Pasha⁴,Prof. S.M. Hashmi⁵ PG STUDENT, Structural Engineering, Khaja Banda Nawaz College of Engineering,Gulbarga¹ Professors, Department of Civil Engineering, Khaja Banda Nawaz College of Engineering,Gulbarga^{2,3,4} H.O.D, Khaja Banda Nawaz College of Engineering,Gulbarga⁵ Email:dangemdhussain@gmail.com¹,ermdfaisal@gmail.com²,

Abstract- To resolve the issues of parking in congested metropolitan cities, the concept of soft storeys can be adopted in high rise buildings. But, through the conclusion of this report, it can be found that using soft storeys in earthquake prone areas can make the entire structure less sustainable during an earthquake. For this project, a model of G+12 storeys was created and analysed for tall structure including soft storey for different levels using ETABS. More over ,for Zone 5 ,and other ten models were created and the performance of the structure was analysed by considering ground storey, ground and 1st storey, 3^{rd} and 4^{th} storey, ground and 6^{th} storey , 6^{th} storey , ground , 12^{th} storey and ground, 1^{st} and 2^{nd} storey as soft storeys. To understand further the characteristic point the soft storey Equivalent static method and Response spectrum method has been used in this report.

1. INTRODUCTION

It is being considered a regular practice for building construction in India to have an opened first storey which are generally used for parking of vehicels and is known as soft storeys. Soft storey for a building can be opted if the stiffness of the level above the floor is 70% less or at an average of 80% stiff for above three floors.

In major construction projects, including residential, commercial and industrial building, a fr amed structure with infill walls are constructed. Those infill walls may be constructed of either concrete blocks or of clay bricks. During the design stage, these frame structures are usually considered as architectural component sand when the design is thorough and the load is distributed uniformly, the structure could with stand any seismic loads, if the design is in effective and load distribution is nonuniform then the structure could not stand stiff during an earthquake.

In numerous business and modern spots and further more in private structures, strengthened solid casings structures with brick work infill dividers are normallv developed.Stone work inf ill is fundamentally comprised of dirt, block or solid squares dividers are introduced among shafts and segments of edge structures.in configuration process these boards are not favored and considered as structural parts.At the point when the infills are dispersed in consistently the structure and configuration is appropriately completed then they

positively affect the seismic reaction of the structure. On the opposite side, the non uniform dissemination of the infill 's will have terrible impact or negative impact .

2. OBJECTIVES

- To study the behaviour of the G+12 building under the seismic zone V using ETABS 2013.
- Comparing the results analysed by linear static method and Response spectrum method.
- To obtain the results by providing the infill walls.
- To obtain the free space in the multistoreyed building for parking purpose.
- Obtaining the results from the analysis by providing with and without infill walls.
- To study the maximum displacement, drift and base shear from the tall structure located in earthquake zone.
- •

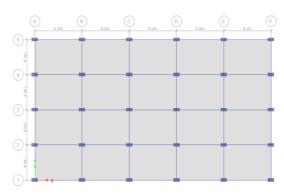
International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

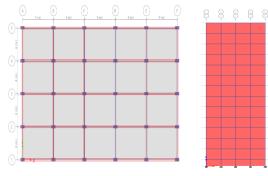
3. ANALYTICAL MODELLING

Model 1: Bare frame.

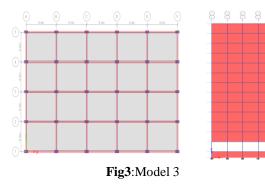
Model 2: Full infill.


Model 3: Full infill with ground floor soft storey.

Model 4: Full infill with ground floor &1st soft storey.


Model 5: Full infill with $3^{rd} \& 4^{th}$ soft storey. Model 6: Full infill with ground floor and 6^{th} floor soft storey.

Model 7: Full infill with 6th floor soft storey. Model 8: Full infill with ground floor and 12th floor soft storey.


Model 9: Full infill with 12th floor soft storey. Model 10: Full infill with ground floor,1st& 2nd soft storey.

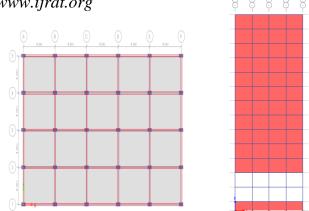
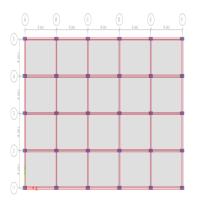
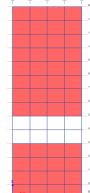
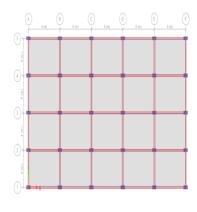





Fig4:Model 4

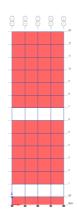
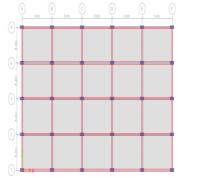



Fig6: Model 6

International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

88888

Fig7: Model 7

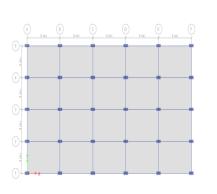
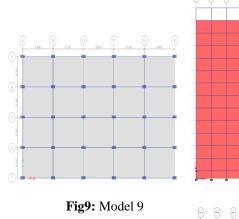



Fig8: Model 8

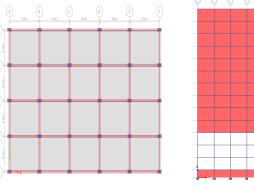
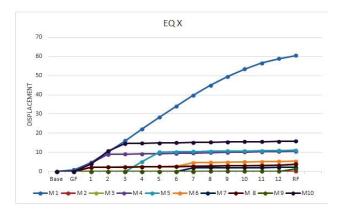


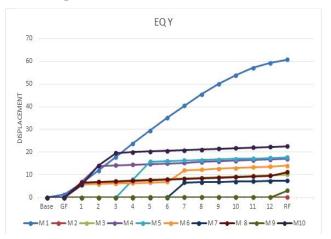
Fig10: Model 10

4. DESIGN DATA

NO. of storey	G+12	
Area	480m ²	
Height of storey	3.2m	
Characterstics of concrete	30N/mm ²	
Characterstics of steel	500 N/mm ²	
Column size	0.4m x 0.8m	
Beam size	0.3m x 0.45m	
Thickness of slab rcc slab	0.15m	
Brick masonry wall	0.23m	
thickness		
Density of R.C.C	25 KN/m ²	
Poissons ratio	0.2	
Density of Red brick	18 KN/m ²	
Live load	4KN/m ²	
Floor finish	1KN/m ²	
Wall load	3.2-	
	0.6(18X0.23)=10.764	
Paraphet	1.8KN/m ²	
Seismic zone	V	
Reduction factor	5	
Importance factor	1	
Soil type	Medium	

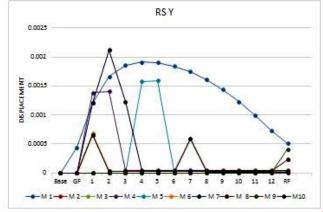

5. RESULTS

The analysed results of the study which is obtained from the linear static method and response spectrum method are listed below which are maximum displacement, story drift, time period and base shear.

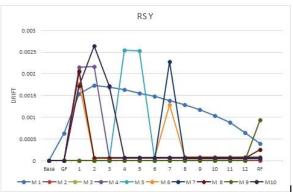

5.1 STOREY DISPLACEMENT

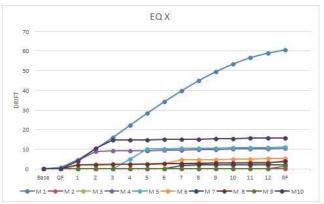
Storey Displacement in X & Y Directions

International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org


Displacement of Model 1 to Model 10 (M1 to M10)

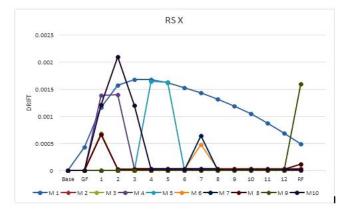
Displacement of Model 1 to Model 10 (M1 to M10)


Displacement of Model 1 to Model 10 (M1 to M10)

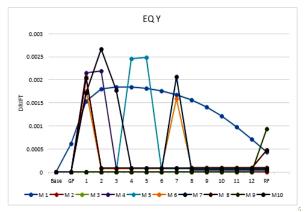

Displacement of Model 1 to Model 10 (M1 to M10)

5.2 STOREY DRIFT

Storey Drift in X & Y Directions

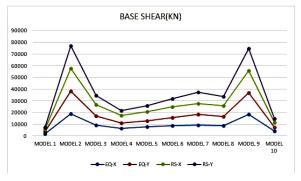


Storey Drift of Model 1 to Model 10 (M1 to M10)



Storey Drift of Model 1 to Model 10 (M1 to M10)

International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 E-ISSN: 2321-9637 Available online at www.ijrat.org


Storey Drift of Model 1 to Model 10 (M1 to M10)

Storey Drift of Model 1 to Model 10 (M1 to M10)

5.3 BASE REACTION

Base shear (kN)			frame) is 48.45mm and $M5$ (full infill with 4^{th} floor soft storey) is 11.217mm which		
	Equivalent st	atic method	RSN	1	23.14% reduction and in M10 (full infi GF,1 st and 2^{nd} floor soft storey) is 15
Storey	EQ-X	EQ-Y	RS-X	RS-Y	which shows 31.5% reduction in displacem Time period of the M1 (bare frame) is
Model1	1826.9787	1785.8406	1860.7768	1819.8027	time period of the M1 (bare frame) is time period recorded in M3 provided wi
Model2	19069.469	19069.469	19423.4637	19437.4366	storey at ground floor with infill is 0.632.
Model3	9241.4239	7950.8132	9393.4389	8058.7435 RE	FERENCES
Model4	6637.2317	4199.0443	6707.5719	4256.4497]	Amit V. Khandve "Seismic Response
Model5	7813.5316	4966.4695	7939.8077	5028.6397	Frame Buildings with Soft Storeys" Interr
Model6	8948.1132	6758.9893	9114.7919	6876.5823	Journal of Engineering Research and App (IJERA) ISSN: 2248-9622 www.ijera.co
Model7	9241.4239	9241.4239	9403.3182	9398.5127	2, Issue 3, May-Jun 2012, pp.2100-2108
Model8	8948.1132	7852.3832	9077.3197	7931.8792]	K.Vamsi Satyanarayana, Vinodh kumar "S
Model9	18482.8478	18482.8478	18832.2357	18838.0257	Response of Rc Frame Building With Soft
Model10	4192.9041	3049.4477	4234.5537	3096.1773	At Different Floor Levels" International

Base Shear of Model 1 to Model 10 (M1 to M10) Showing EQ-X, EQ-Y, RS-X & RS-Y

6. SUMMARY

In this study the analysis of G+12 multistoreyed building located in zone V with ten models provided with soft storey at different floors is studied. The analysis is done by both linear static and linear dynamic method. The results were obtained and compared are displacement, drift, time period and base shear. From this analysis the following conclusion are:-

7. CONCLUSIONS

- Providing the soft storey at the first floor is the • most preferable in multi-storeyed building and for the next levels, soft stories at different floor are to be provided as per required measures.
- Results obtained by response spectrum method is more accurate then equivalent static method.
- It can seen that the displacement of M1 (bare h 3rd and h shows fill with .379mm nent.

2.663 . vith soft

of RC mational olication om Vol.

'Seismic ft Storey Journal International Journal of Research in Advent Technology, Vol.6, No.8, August 2018 E-ISSN: 2321-9637

Available online at www.ijrat.org

of Engineering Trends and Technology (IJETT) – Volume-42 Number-4 - December 2016

- [3] PROF S.S PATIL and .Mr.SAGARE S.D "Study on Dynamic Analysis of soft Storey High rise building with shear wall" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 p-ISSN: 2395-0072 Volume: 02 Issue: 06 | Sep-2014
- [4] Pavithra R Dr. T. M. Prakash "Study of Behavior of the Soft Stories at Different Locations in the Multi-Story Building" International Journal of Engineering Research &Technology (IJERT) http://www.ijert.org ISSN: 2278-0181 Vol. 7 Issue 06, June-2018
- [5] Vipin V. Halde, Aditi H. Deshmukh "REVIEW ON BEHAVIOR OF SOFT STOREY IN BUILDING" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 p-ISSN: 2395-0072 Volume: 02 Issue: 08 | Nov-2015
- [6] Ghalimath. A.G, Hatti M.A "ANALYTICAL REVIEW OF SOFT STOREY" International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 p-ISSN: 2395-0072 Volume: 02 Issue: 06 | Sep-2015
- [7] Dr. Mizan DOĞAN,Dr. Nevzat KIRAÇ, Dr. Hasan GÖNEN "SOFT-STOREY BEHAVIOUR IN AN EARTHQUAKE and SAMPLES OF IZMIT-DUZCE" ECAS 2002 Uluslarararası Yapı ve Deprem Mühendisliği Sempozyumu, 14 Ekim 2002, Orta Doğu Teknik Üniversitesi, Ankara, Türkiye